Atmospheric Infrared Sounder

Characterization and Validation of

Cloud-Cleared Radiances

E.F. Fishbein

H.H. Aumann

S-Y Lee

L. Chen

Methodologies

- Develop independent test for cloud contamination
 - Results of tests empirically derived from clear scene radiances
- Assess quality based on impact on retrieved products
- Characterize and compare statistical variability
 - Mean
 - Standard deviation
 - Covariance (EOF's)

Clear Sky Test of CC Radiances

- CC radiances should pass a clear scene test
- Clear scene discriminants were derived empirically Discriminants increase with increasing cloud contamination
 - Perturbation to outgoing thermal IR
- More than 8 discriminants have been derived
- Validated
 - Intercomparisons with correlative SST and
 - Review of observed calculated spectra
- Accurate to 0.1-0.3K

Clear Sky Discriminants

- Approaches (empirical)
 - Comparison of SST in difference spectral windows
 - Extrapolation of lapse rate to surface (4.5mm)
 - Split-window approach (9 -12 mm)
 - Window channel with reflected-solar correction (SW)
 - Neighboring footprint coherency (LW & SW)
 - Tropical lapse rate (SW)
 - Cirrus signal detection (LW)

Acceptance Rate

Atmospheric Infrared Sounder

Does not address amount of cloud contamination

Quality Assessment Based on Geophysical Intercomparison

- Atmospheric Infrared Sounder
 - Indirect validation
 - no direct estimate of amount of contamination
 - Geophysical products are retrieved from CC radiances
 - Radiance noise from cloud contamination is correlated
 - No error cancellation
 - 1-to-1 correspondence between radiance bias and retrieved temperature
 - Correlative data sources
 - SST from NCEP analysis
 - Mean tropospheric temperature (Sfc 700 hPa)

SST-based Assessment

Atmospheric Infrared Sounder

AIRS is skin, analysis is bulk

Conclusions

- Outlier rate uncorrelated with clear assessment
- SST error density function independent of discriminant
- Many AIRS retrieved SST differ from analysis by more than 1K
- Retrieved product quality not a strong validation source

Empirical Orthogonal Functions Data

- Train on 826,340 identified clear spectra (11 Focus Days)
- LW temperature sounding channels (470)

Clear and CC Statistics Mean and Standard Deviation

Clear Sky Eigenvalues

Clear Sky Eigenvectors

Cloud-Cleared Eigenvalues

Latitude Sampling

Conclusions

- Application of cloud-contamination test
 - Most of CC radiances past test
- Assessment of quality based on impact on retrieved products
 - Outlier rate not dependent on clear test
 - Suggests outliers do not arise from errors in CC radiances
- Characterize and compare statistical variability
 - Small differences in most significant eigenvectors
 - Larger sample of states
 - Larger eigenvalues at least significant
 - Evidence of noise amplification

Conclusions

Supplemental Slides

Clear Scene Prescription

Name	Description	Location	Time of Day	Default Condition
SST1231r5	SST from LW channels using a split window	Ocean	Day/Night	Condition
SST2392r1	SST from SW channels using lapse rate extrapolation	Ocen	Day/Night	
d2392r1	Difference of SST from LW and SW channels, SST1231r5-SST2392r1	Ocean	Day/Night	> -2K
dd12g5	SST LW/SW difference with glint correction	Ocean	Day	abs < 0.5K
d12	SST LW/SW difference w/o glint correction	Ocean	Night	abs < 0.25K
d23	LW Thin cirrus and silicate dust predictor	Ocean	Day/Night	abs < 0.25K
d34	LW Thin cirrus predictor	Ocean	Day/Night	abs < 0.5K
Irt	SW lapse rate	Tropical Ocean	Day/Night	> 3.5K
g5n	SW sun glint detector	Ocean	Day	< 3
spatial_coh 11 um	Std Deviation in LW predicted SST	Everywhere	Day/Night	< 0.5

Lower Tropospheric Temperature Assessment

Discriminant Examples

